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NOMENCLATURE 

Since the symbols are defined a s  an integral part of the text, only a partial 

listing is provided here. Those included are  considered to be of greatest assis- 

tance to the reader in interpreting the content of this report. 

a =  

b =  

e =  
0 

e(t) = 

f(t) = 

f =  n 

h(t) = 

H(W) = 

N (") = 

K(t, W) = 

0 

K (t,") = 
S 

K (t,") = Y 

m =  

n(t) = 

R =  
0 

damped natural frequency of the system 

exponential decay coefficient in the system 
response to a unit impulse 

stationary response coefficient (see Eqn. 4.23) 

envelope modulation function 

input force function 

system natural frequency in hertz 

system response to a unit impulse (see Eqn. 4.5)  

frequency response function of the system 

mw H(") 2 
n 

shaping filter for the unit step modulation 
(see Eqn. 4.14) 

residual shaping filter for the rectangular step 
modulation (see Eqn. 4.28) 

shaping filter for the damped exponential 
modulation (see Eqn. 4.36) 

mass of the system 

input random noise 

measure or system damping 

autocorrelation function of the input noise 
(see Eqn. 3.4) 

constant in the autocorrelation function for 
correlated noise 

iii 



S (w) = two-sided power spectral density function 
of the input noise (see E@. 4.11) n 

t = time duration of input pulse 
0 

u(t) = unit step function 

a = exponential decay coefficient of the auto- 
correlation function for the correlated 
noise input (see Eqn. 3.4) 

@ = threshold ratio for probabilistic spectra 
0 

y = decay coefficient for the exponential 

5 = damping factor of the system 

p = frequency of the autocorrelation function for 

decay modulatiori (see Fqn. 3.3) 

the correlated noise input (see Eqn. 3.4) 

0 = stationary root-mean-square response 

d (t) = nonstationary root-mean-square response 

Y 

Y 
Q = root-mean-square response maximum 
Pk 

w = 2nf = system natural frequency in radians n n 
per second 
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1.0 INTRODUCTION 

An ability to assess the response characteristics of physical systems in 

random force fields is fundamental to proper design of structural systems in 

random environments. Such an assessment is mandatory for problems of struc- 

tural fatigue and/or catastrophic failure, and frequently is founded upon the 

results of analyses which deal with much simplified structural models. We  

consider here an analytical study, based largely upon previous works of the 

authors, which bears directly upon catastrophic failure predictions in random 

environments considered representative of earthquakes, gusts and pyrotechnic 

shocks. The study finds application to problems of structural and/or compo- 

nent testing with shaped random excitation of limited time duration; it relates 

peripherally to problems of structural fatigue. 

1 



2 . 0  BACKGROUND IN FORMATION 

Previous studies [l] have produced results identified as  probabilistic shock 

spectra. Such results, obtained initially by analog simulation studies [2] and 

later verified by digital simulation, enable one to predict (as a function of prob- 

ability) the maximum response of a single-tuned mechanical system to amplitude 

modulated Gaussian white noise of zero mean. The modulation functions used 

a re  well defined envelope expressions and of adjustable time duration so that 

both stationary and nonstationary properties can be examined. In the litera- 

ture, studies which relate to this class of problems frequently a re  categorized 

under subject headings associated with the single highest peak (SHP) problem, 

extrema1 statistics, and the first passage problem [5]. 

As  depicted by Figures 2 .1  through 2.4, probabilistic spectra are  families 
A 

01 curves i n  P 

sionless parameter f t /Q. The quantity P n o  M 0' 
as an estimate of the probability that the maximum value of I B I, for the input 

time interval At, is less than o r  equal to the threshold level B The dimen- 

sionless quantity S is a ratio of the SHP response of the system to the stationary 

rms  response for an input of white noise. The term f is the system natural 

frequency, the quality factor Q = l/2C and provides a measure of the system 

damping, and t is a measure of the time duration of the input noise. With A t  

as the actual time duration of the modulation function, t = 8, t for the rectangular 

step, t = 2At for the half-sine, and t = 3At for the ramp functions. 

( I S  1 2 Bo; A t )  of the normalized response IS I versus the dimen- 

(I  B I 5 B - A t )  should be interpreted 
A M 

0' 

n 

0 

0 

0 .  0 

The modulation functions used refer to an input excitation of the form 

f(t) = e(t) n(t) 

2 
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where e(t) is the shape of the modulation function and n(t) is random noise; for 

the shown results, n(t) is assumed broadband white noise. The stationary 

response curves a re  probabilistic spectra for a single tuned system which has 

achieved stationarity in  its response (with e(t) assumed unity). Under such 

conditions, the time parameter t should be interpreted as  the time interval T 

over which the system response is sampled. The system mean square response 

then is given by the familiar expression 

0 

2 l-r &So 

wn 

0 = -  
0 2 3  

where m is the mass of the system, w n  is the system undamped natural frequency 

and S is the spectral magnitude of the input noise. Further, for larger numbers 

of response cycles (say fnT/Q 2 IOOO), the noise burst response values tend to 

the stationary results shown as  Figures 2.5 and 2.6. 

0 

The preceding data suggest the stationary results provide somewhat con- 

servative estimates of response maxima for shaped noise bursts of limited 

time duration. Fundamental to such results, however, is the normalization 

Indeed, and i n  B ) by the stationary rms response of the system. 
0 

the shown response maxima are  conservative provided the time-varying rms 

response to a noise burst input does not exceed its corresponding stationary value. 

Since the rms response is influenced collectively by properties of the physical 

system, the modulation function and the input noise, it is not an easy matter to 

make categorical statements concerning such exceedance* characteristics except 

for limited conditions [4]. Mean square exceedance characteristics (and related 

topics) thus have been the subject of several recent investigations [3, 6, 71 and, 

in fact, a r e  a major concern of this study. For completeness therefore, 

* 
the word exceedance and overshoot are used interchangeably. 

7 
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Figure 2.5. Response Maxima of a Single Degree-of-Freedom System 
A 

to stationary White Noise, PM ( I@ I 2 Bo; T) = 0.50 
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Figure 2.6. Response Maxima of a Single Degree-of-Freedom System 
A 

to Stationary White Noise, pM ( I B I 5 B ~ ;  T) = 0.95 
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let us examine the time-varying mean square exceedance problem in abbreviated 

detail even though we may repeat material documented elsewhere. In what follows, 

we examine formulations basic to our solution and quote the results. The attendant 

mathematical detail is omitted for conciseness in presentation. 

10 



3.0 PROBLEM DEFINITION 

Simply, the problem is to determine the variance of the variable y(t) given 

the equation of motion 

where the input excitation is the previously defined modulated noise expression 

f(t) = e(t) n (t) (3.2) 

with n(t) assumed to have a mean value of zero. We consider the three modula- 

tion functions 

e(t) = u(t) 

e(t) = u(t) -u(t - to) 

e(t) = u(t) e-yt 

and the two noise correlation functions 

R n ( ~ )  = 2rrRo8(7) 

RD(7) = R.oe cos p T  
-a. 

(3.3) 

(3.4) 

where the notation u(t) represents the unit step function and 7 defines the time 

difference t2 

decaying harmonic expression defines the correlated noise. 

. The delta function identifies white noise and the exponentially - 

11 



4.0 SOLUTION FORMULATIONS 

2 The basic procedures commonly used to determine the expectation E[y (t)] 

for a modulated noise input are founded upon either unit impulse formulations 

and/or a spectral formulations; we concentrate here upon the latter. Since the 

detailed mathematics are outlined elsewhere [3], we quote only the expressions 

essential to our solution. 

The desired expectation may be written as 

-m 

where 

I ( t , w )  = H(G)Fe(Z - w)e i G t  'J 

(4.1) 

(4.2) 
-65 

with 

1 1 
w 2 H(w) = - 

w 
w 

2 
n I-- + i2C;;- 

mw 

n n 

(4.3) 

12 



It is worthwhile to recall that 

h(t) c - ) H P  1 

where the unit impulse response of the system is 

and 

b = C W  n 

(4.4) 

(4.6) 

The quantity H((4J) is a system frequency response function, F @ - w) defines a e 
transformation associated with the modulation function and S (w) is the (two- 

sided) ordinary spectral density function of the input noise. It should be remem- 

bered that central to the shown formulations a re  the assumptions of system 

linearity a s  well as  separability (in product form) of the input excitation. 

n * 

For the modulation functions quoted earlier, Eqn (4 , l )  is expressable in the 

form 

--m 

* 
or, simply, power spectral density 

(4.7) 

13 



where 

The quantity K(t, w) acts as a "shaping" filter on the stationary formulations; 

specifically, it provides a time-varying spectral description of the interaction 

between the envelope of the input excitation and the structural system, For 

assumptions of stationarity in the response, K(t, W )  reduces to a constant (unity) 

so that B (t)-+a and we have the expression 2 2 
Y Y 

ea 
a 

-W 

The spectral density of the correlated noise is obtained by the Fourier trans- 

formation 

so that 

where 

(4.10) 

(4.11) 

(4.12) 

14 



For white noise of spectral magnitude S , 
0 

0 
R lim s =  CxSn(t) = 7 

0 a 4 0 3  
(4.13) 

Normalized plots* of the system frequency response function and ordinary spectra 

of the correlated noise a re  shown as Figures 4,l and 4.2. 

4.1 UNIT STEP MODULATION 

For the unit step modulation function, 

a 
K(t, W) = 1 + A(t) -P B(t) 

(4.14) 

- 2C(t) cos W t  - (D(t) sin W t )  

with the time-varying coefficients 

-2bt 
a A(t) = e 

- (sin 2 at) 
Btt) - 

C(t) = e cos at  + -sin at 

D(t) = e (sin at) 

b \ 
-bt ( a 1 .  
-bt 

where the quantities a and b are  those defined earlier. 

(4.15) 

* Note; Ho(W) = m@Jn 2 H(W) and So(w) = (”) sn(w> 
RO 

15 
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mens (W)'-,S, 
n 0 

while for the correlated noise, 

R 

m 

2 
Y 

(T (t) = 5 {R1 T1 - X T + R3 T, - X, T4 1 2  

where we define 

(4.17) 

(4.18) 

with 

2 2 2  
p +a + s  a 

a 

(4.19) 



and 

(4.20) * 
2 s = a t - i b  = - s  1 

while s and s are defined by Eqn (4.12). The remaining terms, all time-vary- 

ing coefficients, a r e  given by 
3 4 

T = - 1 - A(t) 
1 2b 

T = - B(t) 
2 

2 2  

a 
+ A(t) + (.' - a '2 - a2) B(t) 

(4.21) 

e-at cos P t  - 2 a P D(t) e -at sinp t 

( s ) B ( t )  - 2 (C(t) + 01 D(t)) e-at s inpt  

+ 2 D(t) eMat cos a 

where A(t), B(t), C(t) and D(t) a r e  defined previously. 

The stationary mean square response may be obtained either from an evalu- 
2 
Y 

ation of 4 (t) as  t-+= or  by the direct integration of Eqn (4.9). For white 

noise, we have the result quoted as Eqn (2.2). For correlated noise, the 

stationary response may be written as 

19 



R 
O c2 2 0 = -  
2 4  0 m a  

where 

c 0 = [ ( ~ )  Al+~3]1’2 

(4.22) 

(4.23) 

with the normalized values 

4 d 

1 R = a R  1 
(4.24) 

4 - 
R3 = a R3 

Note when s = s the solution offered by Eqn (4.17) becomes unbounded 

due to the second-order poles which occur in contrast to the four first-order 

poles when a # p and b # a. Under such circumstances, the coefficients of the 

system response to a unit impulse force a re  identical with those of the auto- 

correlation function of the correlated noise, Subsequently, the time varying 

mean square response becomes 

1 3’ 

20 



-2bt -e 

2 2 

f 2  + 3L: '""7 f- 2 (b + w i t )  sin 2at (4.25) 

and has the stationary value 

R 

8m W 

2 

n 

(4.26) 

4.2 RECTANGULAR STEP MODULATION 

For the rectangular step modulation, 

OD 

2 
Y I H ~ )  l 2  s (w) K(t, w) dw, for 0 * t * t 

n 0 
CY (t) = 

-03 

(4.27) 
W 

B (t) = 
Y 
1 IH(w)12S n (w) K S ( t , w )  d!, for t 2  t 0 

21 



where K(t, w) is that defined as Eqn (4.14) and 

2 

0 
K (t,U-') = E ' F - 2 J) cos wut 

S 

(4.28) 

0 
- 2 (3 K sin w t  

with 

E = A(t) + A(t - t ) 
0 

F = B(t) +- B(t - to) 

G = C(t) C(t - t ) 
0 

(4.29) 

J = D(t) D(t - to) 

K = C(t - t ) D(t) - C(t) D(t - to) 
0 

Since the integral given by Eqn (4.27) for 0 

step modulation, we use directly the work in the previous section. 

t t is precisely that of the unit 
0 

2 
Y 

For white noise over the range 0 * t * to, 0 (t) is given by Eqn (4.16) while 

for t 2 t 
0' 

22 



0. 2 (t) = rrsO 2 3  ( E +  2(!)'l? 

n Y 25m w 

(4.30) 

which redices to 

rrS 

25m w 
0 2 (t) = 
' Y  2 3  ((.it - to) - A(t)) + $ (B(t - to) - B(t)) 1 (4.31) 

n 

2 
O Y  

Now for correlated noise over the range 0 5 t 5 t , B (t) is given by Eqn (4.17) 

while for t 2 t we find after some mathematics that 
0' 

1 + R 3 T c - X  T 
3 a  m 

2 
Y 

B (t) = - 

where 

cos at  
T a = a [ E - 2 ( G + h K +  2b a a 2 0 

(4.32) 

(4.33) 
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a 
Tb - b 

- -  -bt 
0 

a a 2 0 a 

.+ (K -: J) e - bto cos ato] 

2 2  

a 
C = [ ~ +  ( b 2 - a 2 +  2 p2 -a2)  F - 2  ( G + - K +  a a - 2 a J) eutocospt0 

a 

(4.33) cont. 

2 2  

Td = 2 [ 5  a F -  (G+:K+ a 2 0 

a 0 1 
2 

Y 
When s = s3, D (t) over 0 * t * t is given by Eqn (4.25) while for t 2 to, 

CT (t) is shown by the somewhat tedious expression which appears on the 

following page 

0 1 
2 
Y 

24 



2 
2 4  

n 

= 
8m W 

4 w 
(4.34) f (+ G-F 2 2 2  n K - (>)4; J) sin a t j  e-"o 

a b  

4.3 EXPONENTIAL DECAY MODULATION 

In this case, 

where H ( W )  and K (t, W) are obtained from E ( W )  and K(t, W )  simply by replacing 

'bl with '(b - Y)', and multiplying the resulting K(t,w) by e 
Y 

-2yt . 
Y 
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Thus, 

1 1 
2 Hy(@) = ;;I; 

a2 + (b - y)2  - u) + i2(b - Y)@ 

2 2  
Ky(t,W) = e -2yt [. + Ay(t) + By(t) (. - a + w 2 )  (4.36) 

1 

where A (t), B (t), C (t) and D (t) a re  obtained from A@), B(t), C(t) and D(t) 

by replacing, as  before, b with (b - Y). 
Y Y Y Y 

Note the form of Eqn (4.35) is identical to the mean square formulation for 

the unit step modulation except for the exponential e-2yt; again, we make direct 

use of the work in Section 4.1. For white noise, where b # Y, 

- 2yt e m 

(4.37) 
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while for b = Y, 

t - - sin 2at 
m a  

2 
Y 

B (t) = - (4.38) 

For correlated noise with either y < b or Y 3 b, the mean square response 

is given by 

0 -2yt R 

m 

where 

with 

(4.40) 

(4.41) 
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and 

(4.42) 

s = - a + i ( b - Y )  
2Y 

Accordingly, 

Tzr = - By(t) 

T3y = [ 1-1- A (t)+ t b - q 2 - a 2 + p 2 - a 2 )  a 2 By(t) 

- 2 (Y c (t) I-- C Y )  D (t) emat cos p t  (4.43) 

- 2 Dy(t) s in  P t  
a 

T4 Y 

1 

+ - P D (t) e -at cos F t  
a Y  
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with 

-2(b - Y)t 2 
B (t) = e sin at Y 

(4.44) 

a 
-(b - Y ) t  C (t) = e 

Y 

sin at  -(b - Y ) t  D (t) = e 
Y 

For the special case when b = Y and s # s3, 1 Y  

R I I  I f  I 1  I 

m 
2 -2bt{.R T - X  T + R T +X3yTiy} (4.45) 
Y 1 Y  1 Y  l Y  2Y 3 Y  3 Y  s (t) = 7 e 

where 

I I 

Rly := Re (Zlv) 

(4.46) 
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with 

(4.47) 
I 

z3Y = (  (s3 2 l  - a 22) ) 

and 

1 
1Y 2 

I 

T = at - -  sin 2 at 

2 I 

= -sin at 
T2y 

1 a -at p -at 
a - (cos at +- sin at) e cos p t  -a  e sin at sin Pt 

i 2 a 

4Y [a ( a 

I 

T = 2 5 sin at - cos at + - sin at e-ut sin pt 

1 + (f sin at) e-"t cos P t  
a 

(4.48) 

For the case when s = s3 (with b # y) so that ct = b - y and p = a, 
1 Y  
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(4.49) 

which is similar to Eqn (4.25), as might be expected. 

3 1  



5.0 RESULTS 

Due to the importance of the mean-square exceedance problem to predictions 

of response maxima, this study has two main objectives: 

(1) to predict the onset of overshoot* over a practical 

range of both system and noise parameters 

(2) to develop an explanation of why overshoot occurs, 

Upon review, the significance of the analytical results is not always evident by 

a cursory inspection of the shown mathematical expressions. Such is particu- 

larly true for the correlated noise in spite of somewhat more than a moderate 

attempt at  simplification. These expressions, however, a r e  central to an expla- 

nation of the overshoot problem. To understand their importance, we decide 

upon select variations of system parameters, noise parameters and modulation 

envelopes, then construct what are considered meaningful parametric plots. 

To partially satisfy the objectives, consider first the form of the ex- 

pressions which governs the nonstationary mean square response of the sys- 

tem. From Eqn (4.7), we may write 

(5.1) 

* 
We remember that overshoot and exceedance a re  used synonomously, and refer 

to the exceedance of Oy(t) over the stationary value oY. Thus, oPk/uy > 1 
implies an overshoot (exceedance). 
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where the time-varying response spectral density S (t, 0 )  is 
Y 

with K(t, W) termed a rrshapingrr filter for the unit step modulation. The latter is 

so-named for it acts to alter (in time) the spectral content of what otherwise is 

an integrand for stationary response. This function ultimately governs the 

time variation of a (t) and, subsequently, response overshoot. Due to  the form 

associated with a (t) in Eqns (4.27) and (4.35), such remarks are equally 
Y 

pertinent to the other two modulation functions. 

2 y  

In this work, we restrict attention to  a single-tuned system and to three 

modulation envelopes with emphasis upon the unit step and damped exponential 

modulations. To assess system behavior at both high and low values of damping, 

Q = 50 and Q = 5 are selected arbitrarily. From Eqn (4.17), the stationary response 

for correlated noise is governed by the relative values of the system constants ?ar 

and fbt, and the noise constants cx and P. The parameter variations used range 

over the values 0.1 s p/a 5 10 and 0.1 5 a/b 2 10; such reflect a broad range of 

practical interest as  S (W) extends well to either side of the system center fre- 

quency. Figures 5.1 and 4.2 show clearly this behavior and moreover, allow 

a complete interpretation for stationary response. 

0 

For the unit step modulation, Figures 5.1 and 5.2 provide a measure of the 

magnitude of the system stationary response for 0.1 P/a s 10 and 0.1 et/b 10. 

The term c is defined by Eqns (4.23) and (4.24), and represents a normalized 

value of the stationary integral . The largest values of c occur when S (w) and 

) are tuned to resonance; that is W = p = a. Since the smaller values of &/b 

0 * 
0 0 
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Figure 5 .1 .  Normalized Stationary Values for Correlated Noise Inputs, Q = 50 
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Figure -5.2. Normalized Stationary Values for Correlated Noise Inputs. Q = 5 
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Figure 5.3. Response Overshoot for Correlated Noise Inputs Modulated 
by e(t) = u(t). Q = 50 
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by e(t) = u(t), Q = 5 
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imply an input with highly selective filter characteristics (for example, note 

the very narrow band and highly peaked characteristics of S (a)) for a/b = . l), 
c is greatest at resonance for the smallest a/b. Due to the selective nature 

of So(W) for a/b 

For less selective characteristics of S (W), the c values (even though the plots 

may be similar to those for the smaller values of &/b) are  larger away from 

resonance and reduced in a very narrow band centered a t  resonance. 

0 

0 

1, c varies predominantly as  the system function H (w). 
0 0 

0 0 

Both the onset and magnitude of overshoot a r e  summarized by Figures 5,3  

and 5.4.  The plots a r e  families of curves in a/b for Q /a versus p/a with 

0.1 5 p/a s 10; only the values .1 5 a/b 2 10 a re  treated. For a/b * 5, no 

overshoot is noted over the complete range of p/a for either Q = 50 or Q = 5. 

Equivalent mangitudes for Q = 50 generally a re  larger, as  expected. In all cases, 

the larger overshoot vaiues a re  associated with the smaller values of a/b with 

p/a centered away from resonance. Over the range 0.1 p/a 1, no exceedance 

greater than two is noted while over 1 P/a 5 10, exceedance values above two 

for a/b s .  5 a r e  not uncommon. At  resonance, no exceedance of the stationary 

value Q is experienced by either system for any a/b over the entire range 

P k  Y 

Y 
0.1 u/b * l o .  

Figures 5 . 5  through 5.10 a re  families of curves in E/b for a normalized 

form of the system response (t). Each figure reflects three time histories 

(a/b = 0.1, 1, 10) for either Q = 50 or  Q = 5 and one of the p/a values of 0.5, 

1 or 2. The horizontal lines (and/or 'labeled' arrows) correspond to normalized 

stationary response values for correlated noise. Such figures provide a portrait 

Y 

of the system time history where both overshoot and convergence to stationarity 

a re  depicted rather clearly. For a/b = 10, no overshoot is experienced (as might 

be anticipated from an examination of Figures 5 , 3  and 5.4) and convergence is 

asymptotic to the stationary value. The predominant oscillation is twice the 

damped natural frequency of the system, a characteristic typical of Q (t) when 

n(t) is white noise (see Eqns. 4.16  and 4.37). At resonance, the asymptotic 

convergence to stationarity is noted for all a/b . 
Y 
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From Figures 5.5, 5.7, 5.8 and 5.10, with a/b = 0.1 and a/b = 1, we 

note the exceedance occurs very quickly in the time history; the response oscil- 

lates about and eventually converges to the stationary value. The convergence to 

stationarity is achieved more rapidly with the higher system damping (Q = 5), an 

expected behavior. As  noted by Eqn (4.21), the response contains arguments of 2a, 

(a + p), and (a - p), hence the oscillatory characteristics of B (t). The particular 

argument(s) emphasized depend upon the relative values of a, b, cx and p; such is 

apparent by comparing the time histories for P/a = 0.5 and p/a = 2. 

Y 

An explanation for overshoot is contained mainly in Figures 5.11 through 

5.19, with Figures 4.1 and 4.2 needed for clarity. The K(t,U) plots a r e  the filter 

shapes imposed on the system stationary response at  distinct intervals of time ; 

in particular, note the sharp selectivity for the smaller values of f t. At  any time 

in the response therefore, the value of Q (t) is obtained by the integration over UI 

of an integrand formed by the triple product IH(w) I S (w) K(t, a)). The magnitude 

of K(t, w) thus 'lshapes+l the integrand and controls the 0 (t) value at any specific 

time. Over all f t shown, K(t, W) has a minimum ("notch") at  system resonance; 

this quantity eventually resolves to a constant when the system response achieves 

stationarity. Since this notch effect (minimum) becomes gradually less predomi- 

nant with time, the asymptotic convergence to the stationary value at resonance 

for all a/b is clear. In such circumstances, the response is governed almost 

entirely by the product IH(w) I Sn(W) near W and as  the value of K(t, ") near W 

gradually reduces to  a constant, so too must 0 (t). 

n 

2 Y 

n 

Y 

n 

2 
n n 

Y 

Further, consider the time hisfary CJ (t) for a/b = 0.1, p/a = 2, and Q = 50 
Y 

which is shown in Figure 5.7. Let us now remark on the maxima and minima of 

the response keeping in mind Figure 4.1 with S ('93) centered at w/a = 2. At 
0 

f t = 0 .3 ,  0.7 and 0.8, 
n .o Y 

(t) is relatively large due mainly to contributions by 

Sn(") as  IH(U) 1" is reduced due to the notch a t  system resonance. At f t = 1, 

CJ (t) is near minimal due to the dual notching effect of K(t, W) at W = W 
Y n 

w = 2w 

included as Figures 5.20 and 5.21 a r e  normalized plots of II(t, W )  I for f t = 1, 3 

n 
and 

the latter corresponding to nearly the maximum of S (W). For interest, n' n 

n 
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and infinity. These plots show the build-up of the me 

at selected values of time where, at infinity, the integrand is that for 

the stationary response, 

The effect of rectangular 

histories of Figures 5.22 th 

response of a system with Q = 50, a/b = 1, P/a = 2 where the time dur- 

ation of the rectangular envelope is varie as f t = 0.22, 0.35, 0.5, 

0.70, 0.80, 1.0 and 1.4. Of note is that the residual response may 

exceed not only the stationary value, but the peak value of CJ (t) as well. 

Given such behavior, its practical use, for example, as a modulation 

envelope in environmental testing, is severely limited. 

n o  

Y 

The system response modulated by the exponential function is 

shown by Figure 5.29 through 5.34. The general effect of an increase 

in the envelope damping coefficient Y is to decrease 0 (t) in time as 
Y 

well as to alter the oscillatory behavior from that experienced with 

the unit step modulation. Although overshoot may occur, it can be 

eliminated beyond fJ = 2 by either an increase in Y (see Figures 5.29, 

5.30 and 5.31) or  an increase in system damping, or both. For Y/b = 10, 

0 (t) is nearly the same for both a/b = 0.1 and a/b = 10. The response 

for a/b = 10 drops below the CT (t) curves for the other two values of a/b; 

note the reverse is true for l//b = 0.1 and Y/b = 1. A more complete set 

of response time histories for this modulation function is shown in 

Appendix C as Figures C.l through C.18. 

Y 

Y 

* 
It should be noted that the response decay exponential e-2Yt(see Eqn 4.39) 

Y 
does not bound the system response CT (t). 
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The companion shaping filter KJt, W) at s both 
Y 

time and a/b is shown as  Figures 5.35 through 5.43, With i 

y, K (t, w) becomes less oscillatory and tends to a constant; such is 

illustrated rather strikingly by a comparison of Figures 5.35, 5.36, 

5.37 and-Figures 5.41, 5.42, 5.43 for Q = 5. 

more selective for y/b = 1 than for Y/b = 0.1, 

This can be explained upon inspection of Eqn (4.36) where we note the 

terms b - Y throughout the expression, For y/b = 1, these terms 

reduce to zero and serve to lessen the effect of system damping on 

Q (t). A more complete set of plots for K (e, w) is shown in Appendix 
C as Figures C. 19 through C. 45, 

sed 

Y 

ote that K (t, W) is 
Y 

apparent anomaly. 

Y Y 
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6.0 CONCLUDING REMARKS 

The detailed mathematics which lead to the solutions presented here a re  

not included as an integral part of this report as they admittedly are cumber- 

some and lengthy, and do not necessarily contribute to a direct understanding 

of the problem. One is reminded, however, that attention to and persistence 

with mathematical detail are  necessary attributes in the evaluation of the 

integrals defined in the text. For the more than casually interested reader, 

a listing of the major integrals encountered and their solutions a re  included 

as Appendix A. 

The noise burst model f(t) = e(t) n(t) is considered representative of gusts, 

earthquake and pyro-shock environments. As  such, its subsequent use in ana- 

lytical studies has practical significance both in design and in response pre- 

diction. Since this form of input is amenable to implementation in the labor- 

atory, its us t  as an "equivalent" shock test for the above environments has 

appeal, As  this study provides much of the theoretical foundation in support 

of such ideas, let us make note of the more leading conclusions, 

Granted the assumptions of system linearity and the product form of the 

input, and given the parametric variations . 1 2 p/a 2 10 and .l 

with 5 9 Q 2 50: 

a/b 5 10 

0 stationary response values for correlated noise 
may be determined 
(see Eqn 4.1 along with Figures 5.1 and 5.2) 

0 response overshoot is not expected for a noise 
input which is nearly white 

e for a correlated noise input, response overshoot is 
not expected for Ct/b > 5 over the range 0.1 5 P/a 5 10 
(see Figures 5.3 and 5.4) 
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* for correlated noise where 0.1 2 U/b * 5, 
response overshoot estimates may be made 
(see Figures 5.3 and 5.4) 

0 response =?ma may be predicted for the 
pnrobabilities P,(I@I 9 Bo; to) = 0.50 and 
PM( IS I * Bo; to) = 0.95; intermediate prob- 
ability values may be estimated 
(see Figures 2.1 through 2.6) 

0 since the residual response of rectangular 
modulation may exceed the peak value of 
ay(t), caution should be exercised in its 
applicati on 

a response overshoot may be controlled for 
exponentially damped modulation by varying 
either the decay coefficient Y or the system 
damping Q, or both 

An explanation of (mean square) response overshoot due to amplitude modu- 

lated noise bursts is a nontrivial task, particularly for correlated noise. Over- 

shoot is dependent upon the relative interaction of the system parameters, the 

noise parameters, and the envelope modulation function; it is governed mainly 

by its corresponding llshapingl filter which involves properties of both the system 

and the modulation envelope. For certain conditions, by shaping (in time) the 

manner in which correlated noise is applied, the system response p (t) can be 

made l;o exceed its stationary value by well over a factor of two, 
Y 

Response overshoot may be avoided for the three modulation functions pro- 

vided the input noise appears to the system as  nearly white. For the parametric 

variation 0.1 * p/a * 10, a/b 9 5 satisfies this requirement for 5 * Q * 50. Over- 

shoot also may be eliminated by %mingff to resonance the noise correlation function 

and the system. frequency response function; this condition produces a maximum 

value in fhe stationary response of the system to correlated noise. 

82 



Before the concepts here can be amalgamated into an effective engineering 

tool for system design in random shock environments, the following need be 

resolved: 

o feasibility of using the input model f(t) = e(t)n(t) with 
standard laboratory test equipment must be established 

e ranges of practical values for the a and p parameters 
need be determined from measured data 

e the shape(s) for a practical modulation envelope must 
be verified and, if necessary, additional analyses 
carried out 

Recalling modulation shapes commonly used for deterministic shock inputs, it 

appears natural to include (1) the half-sine and (2) some form of ramp function 

as modulation functions in future analyses. 
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APPENDIX A 

TABLE O F  SE'LECTED INTEGRALS 

This table of integrals is a partial list of integrals encountered in using a 

frequency domain approach to determine the mean square response of single 

degree of freedom systems to random excitation. In most instances, the inte- 

grand is written in terms of basic system frequency response function H(N), 

and a spectral density function S(W), both defined below. 

Basic system properties; 

2 2 2  k w = a + b  e -  
0 m 

* 
2 

s = a + i b = - s  
1 

a = w  [l - C2 1 
0 

5 = system damping factor 

* 
H ( W )  = conjugate of H(W) 

2 * 1 
2 2 2 2  ]H(W)l = H(W) H (W) = 

(" - SI) (W - s2) 
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Spectral density function for the input noise (see note below); 

* 
-s4 

s = p + i a  = 
3 

U(t) is the unit step function 

0 

U(t) = 1/2 1 1 t<O 

t = O  

t ' O  

6(t) is the unit impulse function defined by 

W 

6(t - to) f(t)dt = f(t ) 
0 

-m 

W 

Note: S(w) = 1 R(T) BwT d7 whereR(7) = e - a ' T '  cos p 7  
2Tr 
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Notation pertinent to the Table of Integrals which begin on the following page 

-2bt A(t) = e 

B(t) = e -2bt sin2 at 

C(t) = e (cos at +- sin at) 

D(t) = embt sin at 

(1 -tk sin 2at) a 

-bt b 
a 

E(t) = A(t) + A(t - to) 

F(t) = B(t) + B(t - t ) 
0 

G(t) = C(t) C(t - t ) 
0 

J(t) = D(t) D(t - to) 
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APPENDIX B 

ADDITIONAL RESULTS FOR THE RECTANGULAR STEP MODULATION 

This appendix contains response time histories Q (t) for the rectangular Y 
step modulation. The intent is to examine the effect of various pulse durations 

on the system response for Q = 5, although some curves are shown for Q = 50. 

Specifically included are: 

1/2 4 2  
B. 2: [~ U;(t)l VS. frit, 

B. 3 : [y Q;(t)l 1/2 VS. frit, 

1/2 4 2  
B.4:  [ -  VS. frit, 

B .5:  [ ~ . ; ( t ) l  VS. f n t, 

1/2 4 2  

1/2 4 2  
B . 6 :  [y vs. f n t, 

1/2 4 2  
B.7: [~ . t t ~  VS. f n t, 

= 0.35 

= 0.50 

= 0 .7  

= 0.8 

= 1.0 

= 1 . 4  
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1/2 

FigureB.8: ["" R ~ ~ ( t ~  VS. fk, u/b = 1, p/a = 0.5, Q = 5, f t = 0.5 n o  

= 1.0 
4 2  

n 

1/2 4 2  
Figure B. 10: [~ vs. f t, a/b = 1, P/a = 0.5, Q = 50, f t = 0.5 n n o  

4 2  

n 
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APPENDIX C 

ADDITIONAL RESULTS FOR THE EXPONENTIAL DECAY MODULATION 

This appendix includes response time histories @ (t) for the damped 

exponential modulation and spectral content of the shaping filter K (t, (9). Such Y 
should be considered expository in nature and serve to reinforce an understanding 

of system behavior (including overshoot) for the exponential envelope function, 

Specifically included are: 

Y 

Response time histories: 

1/2 4 2  
c . 2 :  [y .:o] vs. f n t, 

c . 3 :  [y .:i.1 vs. f n t, 
1/2 4 2  

= 1 . 0  

= 2 . 0  

1/2 4 2  
C .4 :  [~ .:(ti vs. f n t, a/b = 1, p/a = 0 . 5  

I 
1/2 4 2  

c . 5 :  1~ vs. f n t, = 1 . 0  

= 2.0 
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Figure C. 7: 

= 1.0 I = 2.0 

I = 2.0 

1/2 4 2  
c.11: ~~ .:(.I vs, f n t, 

(3.12: [y vs. frit, 
1/2 4 2  

1/2 4 2  C. 13: [T a m  .;(ti vs. f t, a/b = 1, p/a = 0.5 

C. 14: [~ f f ~ ( t ~  vs. f n t, 

C. 15: [y vs. f:, 

n 

= 1.0 

1/2 4 2  

1/2 4 2  
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1/2 4 2  
Figure C. 16: [~ . ~ ( t ~  vs. f n t, a/b = 10, P/a = 0.5, Q = 5 

1/2 4 2  
C.17: ~~ ~ ~ ( t ~  vs. f n t, 

C.18: [y .:(t~ vs. f n t’ 

= 1.0 

1/2 4 2  
= 2.0 

Shaping filters: 

Figure C, 19: K (t, U) vs. w/Wn, Y/b = 0.1, f t = 0.1 Y n 

C. 20: K (t,U-‘) vs. W/W Y n’ 

Y n’ 
C.21: K (t,W)vs. w/W 

C. 22: K (t,“) vs. W/W Y n’ 

C.23: K (t,W)vs. W/W Y n’ 

C.24: K ( t , a ) v s .  W/W Y n’ 

C. 25: K ( t , W )  vs ,  w/W Y n’ 

C. 26: Ky(t, m) vs. W/U n’ 

C.27: K (t ,w)vs.  w/u~, Y 

= 0 . 3  

= 0 . 5  

= 0 . 7  

= 0.8 

= 1.0 

= 1 . 5  

= 2.0 

= 3 . 0  
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Fig-ure C. 28: Ky(t, W) vs. ./wn, Y/b = 1, f t = 0.1 n 

= 0.3 

= 0.5  

= 0.7 

= 0.8 

= 1.0 

= 1.5 

= 2.0 

i = 3.0 

C. 29: K (t, W)  VS. w/ Wn, 

C.30: K ( t , W )  VS. w/Wn, 

(3.31: K ( t , W )  VS. W/Wn, 

C.32: K ( t , W )  VS. W/W 

Y 

Y 

Y 

Y n' 

C.33: K (t,") VS. w/wn, 

C. 34: K (t, w) VS. W/ wn, 

C.35: K (t,UJ) VS. W/Wn, 

C.36: K ( t , w )  VS. w/wn, 

Y 

Y 

Y 

Y 

C. 38 : K (t, ") vs. w/wn, 

C.39: K (t,") VS. w/Wn, 

C.40: K (t,") vs. @/Wn, 

C. 41 : K (t, w) vs. @/wn, 

C. 42 : K ( t , W )  vs. w/wn, 
Y 

C.43 : K ( t , W )  vs. w / w  Y n' 

C. 44 : K (t, W )  VS. W/Wn, 

C.45 : K (t,") vs. w/wn, 

Y 

Y 

Y 

Y 

Y 

Y 

= 0.3 

= 0.5 

= 0.7 

= 0.8 

= 1.0 

= 1.5 

= 2.0  

= 3.0 
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Figure C. 19. Shaping Filter K (t, 8 )  with f t = 0.1, Y/b = 0.1 Y n 137 
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Figure C. 20. Shaping Filter K (t. 3 )  with f t = 0.3 ,  Y/b = 0.1 
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Figure C. 21. Shaping Filter Ky(t, 3 )  with f t = 0.5, 'i/b = 0.1 n 

2.5 

13 9 



h 

3 
s 
Y 

&- 

140 

10.0 
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0.01 

Figure C. 22. Shaping Filter K (t, w) with fnt = 0.7, Y/b = 0.1 Y 
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0.01 

Figure C. 23. Shaping Filter K (t, w )  with fnt = 0.8, y/b = 0.1 
Y 

141 



l o  

1.0 
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Figure C. 24. Shaping Filter K (t, 'N) with frit = 1.0, Y/b = 0. I Y 
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Figure C. 25. Shaping Filter K (t, a) with frit = 1.5, y/b L= 0.1 Y 
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Figure C. 26. Shaping Filter K (t, '3) with fnt = 2.0, Y/b = 0.1 Y 
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Figure C. 27. Shaping Filter K (t, W) with fnt = 3.0,  ‘y/b = 0.1 Y 
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Figure C. 28. Shaping Filter K (t, u)) with frit = 0, 1, Y/b = 1.0 
Y 
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Figure C. 29. Shaping Filter K (t, 3 )  with fnt = 0.3, Y/b = 1.0 Y 147 
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Figure C,30. Shaping Filter K (t,") with fnt = 0.5, y/b = 1.0 Y 
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Figure C. 31. Shaping Filter K (t, 'JJ) with frit = 0.7, y/b = 1.0 Y 149 



h 

3 

10,o 

1.0 

0.1 

0.01 

0 0.5 1.0 1,5 2.0 

w/w - n 

2.5 

Figure C. 32. Shaping Filter K (t, W) with frit = 0.8, Y/b = 1.0 Y 
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Figure C.33. Shaping Filter K (t, 19~) with f,t = 1.0, y/b = 1.0 Y 151 
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Figure C . 34. Shaping Filter K (t, 91) with fnt = 1.5, Y/b = 1.0 Y 
152 



10.0 

1.0 

0, 1 

0.01 

' 

0 1.0 1,5 2.0 

w/w . n 

Figure C. 35, Shaping Filter K (t, VJ) with f,t = 2.0, y/b = 1.0 Y 
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Figure C. 36. Shaping Filter K (t, W) with fnt = 3.0, y/b = 1.0 Y 
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Figure C. 37. Shaping Filter K (t, 3) with f t = 0.1, 'Y/b = 10 Y n 155 
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Figure C. 38. Shaping Filter K (t, 3) with fnt = 0.3,  Y/b = 10 Y 
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Figure C.. 39. Shaping Filter K (t, W) with frit = O. 5, 'Y/b = 10 
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Figure C. 40. Shaping Filter K (t, U) with f t = 0.7 ,  Y/b = 10.0 Y n 
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Figure C. 41. Shaping Filter K (t, W) with f t = 0.8, y/b = 10.0  Y n 159 
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Figure C042 .  Shaping Filter K. (t, W )  with fnt = L O ,  y/b = 10 160 Y 
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Figure C.43.  Shaping Filter K (t, 8 1 )  with f n t = 1.5, y/b = 10 
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Figure C. 44, Shaping Filter K (t, ~) with frit = 2.0, Y/b = 10 162 Y 
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Figure C. 45. Shaping Filter K (t, W) with fnt L- 3.0,  I /I> 10 
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